Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

catena-Poly[bis[diaquaisonicotinatosamarium(III)]-bis(μ_3 -pyridine-3,4-dicarboxylato)]

Fang Wang, Yong-Ke He, Yi Ma and Zheng-Bo Han*

School of Chemical Science and Engineering, Liaoning University, Shenyang 110036, People's Republic of China

Correspondence e-mail: ceshzb@lnu.edu.cn

Key indicators

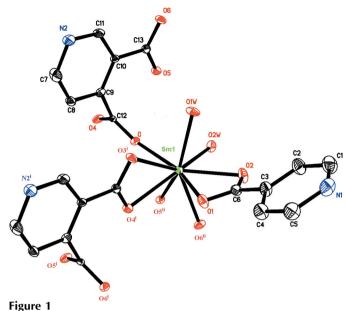
Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.005 \text{ Å}$ Disorder in main residue R factor = 0.025 wR factor = 0.062 Data-to-parameter ratio = 12.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The title samarium(III) coordination polymer, $[Sm(C_6H_4NO_2)(C_7H_3NO_4)(H_2O)_2]_n$, has a pyridine-3,4-dicarboxylate-bridged ribbon structure. The isonicotinate (ina) anion chelates to the water-coordinated metal atom, which shows ninefold coordination. The ina unit arises from the decarboxylation of pyridine-3,4-dicarboxylic acid under the hydrothermal conditions of the synthesis.

Received 31 August 2006 Accepted 2 September 2006

Comment


In our previous work, three lanthanide coordination polymers, viz. $[Nd(pydc)_2 \cdot H_2O]_n$, $[Eu(pydc)(ina)(H_2O)_2]_n$ and $[Gd(pydc)(ina)(H_2O)_2]_n$ (pydc = pyridine-3,4-dicarboxylate and ina = isonicotinate), were synthesized by treating Ln^{III} nitrate with pyridine-3,4-dicarboxylic acid under similar reaction conditions (Han *et al.*, 2005, 2006). Unexpectedly, decarboxylation occurred and the pydc group was transformed into an ina group in the hydrothermal syntheses of the Eu^{III} and Gd^{III} coordination polymers. This study has been extended to other Ln^{III} coordination polymers as the basis for investigating *in situ* decarboxylation. We report here the synthesis and structure of the samarium(III) analog, (I).

$$H_2O$$
 H_2O
 I
 I

In (I), the Sm^{III} ion is coordinated by nine O atoms, five from three pydc ligands, two from one chelating ina group and two from two aqua ligands (Fig. 1). Pairs of Sm atoms are bridged by two μ_2 -carboxylate O atoms of the pydc groups, forming dinuclear Sm₂(pydc)₂ subunits which are interconnected through the chelating carboxylate groups of the pydc ligands, forming an infinite one-dimensional ribbon; the

© 2006 International Union of Crystallography All rights reserved

metal-organic papers

Plot depicting the coordination environment of the metal atom, The asymmetric unit, together with additional ligands to complete the metal coordination, with displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) x - 1, y, z; (ii) -x + 2, -y + 1, -z + 1.]

Sm···Sm distances are 5.954 (3) and 6.437 (3) Å. These chains are further linked *via* hydrogen bonds (Table 2) between pyridyl N atoms, carboxylate O atoms and aqua ligands, forming a three-dimensional supramolecular network.

As for $[Eu(pydc)(ina)(H_2O)_2]_n$ and $[Gd(pydc)(ina)-(H_2O)_2]_n$, decarboxylation also occurred in the samarium(III) coordination polymer and the pydc groups were partially transformed into ina groups.

Experimental

A mixture of Sm(NO₃)₃·6H₂O (0.5 mmol, 0.222 g), pyridine-3,4-dicarboxylic acid (0.5 mmol, 0.087 g), NaOH (1 mmol, 0.04 g) and water (10 ml) was placed in a 23 ml Teflon reactor, which was heated at 453 K for 6 d. The reactor was cooled to room temperature at a rate of 5 K h⁻¹ (yield 60%). Analysis for $C_{13}H_{11}N_2O_8Sm$ (found/calc): C 32.85/32.97, H 2.39/2.34, N 5.78/5.92%.

Crystal data

[Sm($C_6H_4NO_2$)($C_7H_3NO_4$)(H_2O)₂] Z=4 $M_r=473.59$ $D_x=1.915~{\rm Mg~m}^{-3}$ Monoclinic, $P2_1/n$ Mo $K\alpha$ radiation $a=5.9541~(19)~{\rm \mathring{A}}$ $\mu=3.62~{\rm mm}^{-1}$ $b=25.047~(8)~{\rm \mathring{A}}$ $T=293~(2)~{\rm K}$ $c=11.215~(4)~{\rm \mathring{A}}$ Block, colorless $\beta=100.775~(7)^\circ$ 0.37 × 0.35 × 0.23 mm $V=1643.0~(9)~{\rm \mathring{A}}^3$

Data collection

Bruker APEX area-detector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.348, T_{\max} = 0.490$ (expected range = 0.309–0.435)

9867 measured reflections 3228 independent reflections 3049 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.027$ $\theta_{\rm max} = 26.0^{\circ}$

Refinement

refinement

Refinement on F^2 $w = 1/[\sigma^2(F_o^2) + (0.0254P)^2]$ $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.062$ S = 1.07 $(\Delta/\sigma)_{\max} = 0.001$ $\Delta\rho_{\max} = 0.58 \text{ e Å}^{-3}$ $\Delta\rho_{\min} = -0.81 \text{ e Å}^{-3}$

Table 1Selected geometric parameters (Å, °).

Sm1-O1W	2.363 (3)	$Sm1-O4^{ii}$	2.470 (3)
Sm1-O2W	2.370 (3)	Sm1-O2	2.492 (3)
Sm1-O3	2.394(2)	$Sm1-O6^{i}$	2.509 (3)
$Sm1-O5^{i}$	2.420(2)	$Sm1-O3^{ii}$	2.643 (3)
Sm1-O1	2.463 (3)		
O1W-Sm1-O2W	76.56 (11)	O3-Sm1-O1	152.40 (9)
O1W-Sm1-O3	83.82 (10)	$O5^{i}$ -Sm1-O1	79.68 (9)
O2W-Sm1-O3	80.03 (9)	$O3-Sm1-O4^{ii}$	115.23 (8)
$O1W-Sm1-O5^{i}$	127.79 (9)	$O5^{i}$ – $Sm1$ – $O4^{ii}$	81.96 (9)
$O3-Sm1-O5^{i}$	80.60 (9)	$O1-Sm1-O4^{ii}$	80.78 (10)

Symmetry codes: (i) x + 1, y, z; (ii) -x + 1, -y + 1, -z + 1.

Table 2 Hydrogen-bond geometry (Å, °).

$D-\mathbf{H}\cdot\cdot\cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathbf{H}\cdot\cdot\cdot A$
O1W—H1WB···N2 ⁱⁱⁱ	0.843 (18)	1.84 (2)	2.683 (4)	172 (5)
$O1W-H1WA\cdots O1^{iv}$	0.837 (19)	1.95(2)	2.761 (4)	164 (4)
$O2W-H2WA\cdots N1^{v}$	0.844 (19)	1.86 (3)	2.69 (2)	167 (7)
$O2W-H2WA\cdots N1'^{v}$	0.844 (19)	1.93 (3)	2.76 (2)	167 (6)
$O2W-H2WB\cdots O4^{vi}$	0.837 (19)	2.28 (4)	2.908 (4)	132 (4)
$O2W-H2WB\cdots O5^{vi}$	0.837 (19)	2.29 (3)	2.997 (4)	143 (5)

Symmetry codes: (iii) -x, -y+1, -z; (iv) x-1, y, z; (v) $x-\frac{1}{2}$, $-y+\frac{1}{2}$, $z+\frac{1}{2}$; (vi) -x, -y+1, -z+1.

Carbon-bound H atoms were placed at calculated positions and refined in the riding-model approximation (C–H = 0.93 Å), with $U_{\rm iso}({\rm H})=1.2U_{\rm eq}({\rm C}).$ Water H atoms were located in difference Fourier maps and refined, with distance restraints of O–H = 0.85 (2) Å and H···H = 1.39 (1) Å. The pyridine ring of the isonicotinate group is disordered; the occupancy was fixed at 0.5. Distance restraints C–C = C–N = 1.390 (5) Å and C···C = C···N = 2.780 (5) Å were applied.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2001); software used to prepare material for publication: *SHELXTL*.

The authors thank the Program for Liaoning Excellent Talents in University for supporting this work (RC-05–11).

References

Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Han, Z.-B. & He, Y.-K. (2006). Acta Cryst. E62, m2374-m2376.

Han, Z.-B., Li, X.-F., Cheng, X.-N. & Chen, X.-M. (2005). Z. Anorg. Allg. Chem. 631, 937–942.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.